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Abstract

The permeation of polymer chains through a small hole is simulated using dynamic Monte Carlo method. The dependence of the

permeation velocity v on concentration C of polymer chain, chain length n and hole size s is investigated. The velocity v increases non-

linearly with C, differing from linear dependence of hard sphere system, indicating that inter-chain interaction plays an important role in the

permeation process. At the same concentration, the velocity decreases with the chain length n via a relation vZaCbnKf, where the exponent

f increases linearly with C. Such a behavior is different from a single chain system. The possible physical reason is addressed. The velocity is

proportional to hole size when the chain size is smaller than the hole size, but it decreases obviously if the chain size is much larger than the

hole size.
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1. Introduction

The dynamics of polymer chains worming through a

narrow hole is a fundamental topic in various biological

processes, such as the translocation of proteins across

biological membranes and that of RNAs across a nuclear

membrane after their synthesis. It also relates to the

transport mechanisms of drug delivery, gel electrophoresis,

and exclusion chromatography. Therefore, the topic has

received considerable attention from both experimental and

theoretical perspectives [1–15]. Theoretically, translocation

time t of a polymer chain worming through a small hole as

well as its scaling behaviors on chain length n can be

derived by applying Fokker–Planck diffusion equation [2,7,

11]. For the case of a single chain driven through a hole on a

planar membrane by chemical potential difference Dm per

segment, Sung and Park [2] revealed that the scaling

behavior changes from twn3 to twn2 at characteristic

chain length ncZkBT/Dm by assuming the diffusion

coefficient DwnK1 to be a constant in the course of
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translocation. Muthukumar [7] found different scalings,

twn2/k0 for small nDm/kBT and twn(kBT/k0Dm) for large

nDm/kBT, using a chain length independent parameter k0.

Here k0 is defined as the rate constant to translocate one

monomer through the hole, which is similar to the diffusion

coefficient D to some extent. The driving force can also be

set up by free energy difference Fd between in and out of a

confinement since, polymer in the confinement is in an

entropy unfavorable state. Park and Sung [4] had investi-

gated the translocation of polymer chain from a sphere and

found that twn2 for R!RG and twn3 for R[RG, here R

and RG are the radius of confinement and the radius of

gyration of polymer, respectively. While for a SAW chain,

Muthukumar’s simulation revealed that the escaping time t

is proportional to n(n/r)5/9, where r is the monomer density

prior to escape [8]. Baumgärtner and Skolnick [1] simulated

the translocation of polymer directly through lipid bilayer,

driven by a concentration imbalance inside and outside of

the lipid bilayer as a higher concentration exists at high-

curvature regions. Polymer chain driven through nano-scale

holes by external force had also been simulated [9,14].

All these investigations attempted to describe the

behavior of a single polymer chain translocating through a

hole. However, many natural systems, like drug releasing

from a capsule [16–18] and gel electrophoresis [19,20],
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contain multi-chains. In such multi-chain systems, inter-

chain interactions will play important role in chain diffusion

since, they attribute the free energy difference. Thus a multi-

chain system is more complicated than a single chain one.

This work tries to find out rules of multi-chain translocating

through a small hole. We study the permeation of linear

polymer chains through a hole from a box in which chains

are confined. The dependences of the permeation velocity

on the concentration of the polymer chains, the chain length

and the hole size are studied.
2. Model and simulation method

Our simulation system is embedded in the simple cubic

(SC) lattice. A polymer chain of length n is comprised of n

self-avoiding identical segments on the lattice. One segment

occupies one lattice site. Bond length between two sequence

segments equals the lattice constant, which is used as length

unit. The simulated box is a cuboid with spacings Lx, Ly and

Lz in x, y and z directions, respectively. Periodic boundary

conditions (PBC) are considered in the x and y directions,

while in z direction there are two infinitely large flat surfaces

locating at zZ0 and LzC1, respectively. The surfaces are

impenetrable except a small hole of size sZsx!sy located in

the center of the upper surface at zZLzC1 through which

polymers can permeate. Above the upper surface, there is an

infinite space. Fig. 1 shows the scheme of our systems. The

interactions between segments of chains and between chain

and surface are self-avoiding, i.e. segments cannot share the

same lattice site and contact the flat surfaces.

At the beginning of simulation, we close the hole and put

initial N0 identical chains of chain length n in the simulated

box with volume VZLx!Ly!Lz. We let the chains

undergo a long enough time of Brownian movement to

establish an equilibrium state. Then we open the hole on the

upper surface and investigate the permeation of chain

through the hole. The moment we open the hole is set as
Fig. 1. Snapshots of our simulation system. The basic simulated box size is

Lx!Ly!Lz. A big square in the upper surface is a small hole through which

chain escapes from the box. The grey and dark circles represent segments

inside and outside of the box, respectively. (a) A chain is permeating

through the hole, and (b) a whole chain escapes from the box.
time tZ0. As we have assumed there is an infinitely large

space above the upper surface, we remove the chain if all of

its segments are above the hole. Therefore, the chain

number N in the simulation box decreases with time.

The Brownian movement of polymer chain involves

local and global movements. The local movement contains

three elementary motions of segments: the end-segment,

normal-segment and 908 crankshaft motions, as described in

Ref. [21]. With the local movement, one, two or three

segments adjust their spatial locations. While the global

movement, reputation in this work, leads the whole chain

worming one lattice constant ahead. The reputation is only

tried for two end segments. The probability for end segment

choosing reputation is arbitrarily set to be 0.5. The time unit

is one Monte Carlo step (MCS) during which Nn trial moves

are attempted. The trial move will be accepted only if self-

avoidance is obeyed. Polymer chains continue undergoing

random movements and their configuration as well as spatial

location changes with time. After a period of time, one

segment of a polymer chain begins to permeate through the

hole. Though the segments outside of the box can be pulled

back into the box again because of random continuous forth

and back motion, more and more segments permeate

outward with time and eventually a whole chain escapes

from the box through the hole. In Fig. 1, we show two

snapshots of chain escaping at different times.

We investigate the rule of the permeation velocity of

chain, vZd(Nn)/dt, i.e. its dependence on chain length n,

concentration CZNn/V inside the box, hole size s et al.

Normally, diffusion caused by spatial gradient of the

concentration can be phenomenologically described by

Fick’s law, that is, a net flux j(z, t) of particles is

proportional to the concentration gradient dC/dz,

jðz; tÞZKDs
dC

dz
(1)

Here, D is the diffusion constant and s is the area of hole. In

our model, the concentration C inside the box is assumed

uniform and CZ0 outside the box, we then obtain the

variation of segment number Nn at time t, or the permeation

velocity

vZK
dðNnÞ

dt
Z

NnDs

Vd
ZCDs (2)

where dZ1 is the thickness of the hole. The permeation

velocity v describes the decrease rate of segment number,

i.e. in unit time v segments (equals to v/n chains) permeate

through the hole.

Eq. (1) was obtained by simply considering the random

Brownian movement of particles with a concentration

gradient. However, the present problem is much more

complicated for the following two reasons: (1) a chain itself

has conformational entropy difference between inside and

outside of the box and (2) a chain changes its configuration

during permeation process thus a resistance force against the

permeation is imposed by the small hole. Therefore, a
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complicated diffusion rule deviating from hard particle

system is expected. In this paper, we have monitored the

time evolution of the polymer chain number N in the box. A

chain length and concentration dependent permeation

velocity v is found and the dynamics of permeation of

chain are investigated. The results shown below are

averaged over at least 104 independent runs.
3. Simulation results and discussion

At first, we have simulated the permeation of simple hard

sphere particles through holes. Each particle occupies one

lattice site, which can be treated as nZ1 in the chain model.

The permeation velocity v can be determined from the time

evolution of the particle number N. Linear dependence

relations vfC and vfs are found, implying that the

diffusion constant D is a constant which is independent of

concentration and hole size.

While for polymer chains, we observe a non-linear

dependence of the velocity v on the concentration C. Fig. 2

gives the typical time evolution of the chain number N

within the box. Here the polymer chain length n is 20, the

box size is 20!20!20, the initial chain number N0 is 150,

and the hole size is 3!3. We have checked the size effect by

comparing results gotten from 10!10!10 to 40!40!40

for the largest chain length nZ100. We did not find obvious

size effect for box size 20!20!20, thus all simulations are

performed in a box of size 20!20!20 in this work that

saves much simulation time. The dependence of the

permeation velocity on the concentration is given in the

insert of Fig. 2. The permeation velocity v increases

nonlinearly with the concentration C. Such a behavior

quite differs from the linear dependence relation vfC of

simple sphere particles. The physical reason may be that the

size of polymer chain is bigger than a simple summarization

of segments n, for instance, the size of a random SAW chain

can be characterized by the radius of gyration of hS2i3/2wn3n

with nz0.6 in random coil states. Therefore, the repulsive
Fig. 2. Plot of the chain number N versus the time t for chains of length nZ
20 permeating through a 3!3 hole from a box of size 20!20!20. The

insert shows the dependence of the permeation velocity v on the

concentration C.
inter-chain interaction increases nonlinearly with concen-

tration. If we assume vZCDs (Eq. (2)) holds in the

permeation process, we find that the diffusion coefficient

D increases with concentration C. Therefore, we conclude

that the diffusion coefficient in the non-equilibrium case is

different from that in equilibrium state, where self-diffusion

constant D decreases with the increase of concentration [22,

23]. Since, the repulsive inter-chain force imposed on the

escaping chain is dependent on the concentration, so it is

reasonable to observe a concentration dependent diffusion

coefficient. And the concentration gradient is very large in

the permeation process, thus a simple Fick’s law might be

insufficient to describe it.

From the permeation velocity v, we can determine the

total escaping time t one chain needed to escape from the

box. The total escaping time t can be expressed approxi-

mated as tZn/v by setting the time interval dt as t and the

segment decrease d(Nn) as Kn in Eq. (2). Fig. 3 presents the

total escaping time t as a function of concentration C. The

total escaping time t decreases with C and it can be roughly

expressed as a power law, twCKa. We find three

concentration regimes with different exponent a within

our simulated concentration range: (1) a low concentration

regime with exponent aZ1; (2) a mediate concentration

regime with aZ2; and (3) a high concentration regime with

aZ3.

The total escaping time t is a summation of (1) relaxation

time t1 for chain relax around the hole and finally one end of

chain finding the hole and (2) escaping time t2 for the whole

chain passing through the hole. Both the relaxation time t1

and the escaping time t2 depend on concentration C, chain

length n and hole size s. Without multi-chain escaping, i.e.

no two or more chains escaping at the same time, chains

diffuse through the hole one by one independently and the

velocity v can be simply expressed as vZn=ðt1Ct2Þ. The

probability of one chain locating near the hole as well as the

free energy difference Fd increases with the concentration,

thus both t1 and t2 decrease with the increase of C. As an
Fig. 3. Plot of the total escaping time t versus the concentration C for chains

of length nZ20 permeating through a 3!3 hole from a box of size 20!
20!20. Dashed lines are of slopes K1, K2 and K3, respectively.
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example, we have calculated these two time scales for chain

of length nZ20 escaping through 1!1 hole. We find that t1

decreases from 312,000 at concentration CZ0.00625 to

2250 at CZ0.5, and t2 also decreases from 169 at

concentration CZ0.00625 to 123 at CZ0.5. A more

complicated ingredient is the chain length n. A simple

reason is that the chain length n itself is also included in the

equation vZn=ðt1Ct2Þ. Besides, there are two contrary

effects on time t1 and t2. The equilibrium diffusion

coefficient in solution decreases with n [24], that will

increase the relaxation time t1 with the increase of chain

length n. We find t1/n slightly increases from 910 of nZ20

to 1140 of nZ100 for chains diffusing through 1!1 hole at

CZ0.25. Also, the escaping time t2 increases with n as that

in single chain translocation process [2,7,8,11]. But there is

one possibility that decreases the escaping time t2 for long

chains. For that the size of polymer chain is bigger than a

simple summarization of segment n and increases non-

linearly with n, therefore, the inter-chain interaction (or the

free energy difference) increases with n that will promote

the escape of chain out of the hole, i.e. decreases the

escaping time t2. However, our simulation reveals that the

escaping time t2/n always increases with n: it increases

from 7.9 of nZ20 to 19.5 of nZ100 for chains diffusing

through 1!1 hole at CZ0.25. Finally, with a bigger hole,

chain becomes easier to find the hole that decreases t1 and

chain also becomes easier to escape with a small escaping

time t2 since, a larger hole imposes a weaker resistance.

Also there exists multi-chain escaping when the hole size

bigger than 1!1, that also decreases t1 obviously.

Now we explore the dependence of the permeation

velocity on the chain length. Fig. 4 gives the dependence of
Fig. 4. Dependence of the permeation velocity v on the chain length n for

two concentrations: (a) CZ0.125 and (b) CZ0.25. Chains permeate

through the hole of size 3!3 from 20!20!20 simulation box. Simulated

chain lengths are nZ10, 15, 20, 30, 40, 50, 60, 80 and 100.
the permeation velocity v on the polymer chain length n.

The velocity decreases with the chain length, which can be

described by a scaling law

vZ aCbnKf (3)

The exponent f and coefficients a and b are determined

by the least square fitting. The exponent f and coefficient b

are found to be linearly dependent on the concentration as

shown in Fig. 5. However, the coefficient a increases

nonlinearly with C. For large chain length n, as nKf

approaches zero, we have the velocity vZa. At low

concentration, the value a tends to be zero, indicating it is

very difficult for a long chain to permeate through a small

hole like single chain model [7]. However, the velocity

increases gradually with concentration, implying that inter-

chain interaction takes effect even at very low

concentrations.

Then we obtain a chain length dependent relation of the

total escaping time t of chain from the definition

tZn=vZn=ðaCbnKfÞ. The asymptote values of t can be

expressed as

tf
n1Cf; a/bnKf

n; a[bnKf

(
(4)

At low concentrations, the parameter a is close to zero so

that a/bnKf is satisfied, then we expect the total escaping

time tfn1Cf. Since, the parameter a increases faster than
Fig. 5. Plot of the scaling exponent f, and coefficients a and b versus

concentration C. Simulation parameters are: box size 20!20!20, hole

size sZ3!3, and concentration CZ0.25. Straight lines in the top and the

bottom panels are linear fittings and smooth curve in the middle panel is

binomial fitting.



Fig. 7. Plot of the scaling exponent f, and coefficients a and b versus the

hole size s. Simulation parameters are: box size 20!20!20, and

concentration CZ0.25.
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the parameter b (Fig. 5), then at high concentrations

a[bnKf will be satisfied, then we expect the total

escaping time tfn. The results show that the inter-chain

interaction plays a very important role in the chain

permeation. It changes the scaling exponent from 1 at

high concentration to 1Cf at low concentration.

Finally, the effect of the hole size on the permeation of

polymer chains has also been studied. The permeation

velocity increases with the hole size since, the barrier Fb

decreases with the increase of the hole size. The dependence

of the permeation velocity v on the hole size s is presented in

Fig. 6 for a short chain nZ20 and a long chain nZ100. The

velocity v is roughly proportional to the hole size for the

short chain. But for the longer chain, a non-linear character

appears at small s. We know that the size of chain is of chain

length dependence. For the SAW chain in dilute solution,

the square radius of gyration hS2iz6 and 45 for nZ20 and

100, respectively. When the size of chain is much bigger

than the hole size, the resistance force imposed by the small

hole increases dramatically and v decreases. Fig. 6 implies

that the velocity difference between two chain lengths, DvZ
v(n1)Kv(n2) with n1!n2, increases with the hole size,

indicating that we should use large hole in order to

accelerate the separation of chains according to the length.

The exponent f and coefficients a and b are determined

by the least square fitting of Eq. (3). Fig. 7 gives the

dependence of these parameters on the hole size s at

concentration CZ0.25. The exponent f shows a suddenly

increase from sZ1!1 to sZ2!2, and then decrease

steadily with increasing hole size. There is no multi-chain

escaping for the hole of size 1!1, but there exist multi-

chain escaping for large hole 2!2. To describe the multi-

chain escaping phenomenon, we have calculated the

probability of two chains escaping from the hole simul-

taneously, i.e. the ratio of two-chain escaping process in all

escaping processes. For instance, the two-chain escaping
Fig. 6. Plot of the permeation velocity v versus the hole size s for chain

lengths nZ20 and 100 at concentration CZ0.25. Simulation box is 20!

20!20. Straight lines are guides for eyes.
probability is about 0.025 for nZ20 through a 2!2 hole.

The probability decreases with chain length and becomes

about 0.016 for chain nZ100. Therefore, the increase of

permeation velocity v for short chain is bigger than long

chain that causes a sudden increase of the exponent f. With

the increase of the hole size, however, the difference of the

two-chain escaping probabilities between two chain lengths

dies away, thus the exponent f decreases with increasing the

hole size. But we find that both coefficients a and b increase

monotonously with the hole size s. Since, b increases with

the hole size s, then the velocity difference between two

chain lengths Dv increases with the hole size.
4. Conclusions

We have studied the permeation of the polymer chains

through small holes by using dynamic Monte Carlo method.

The results show that the inter-chain interaction is very

important in the chain permeation process, as we find that

the permeation velocity nonlinearly depends on the

concentration of the polymer chains. The velocity decreases

with the chain length n, which can be expressed as vZaC
bnKf. The exponent f increases with concentration C,

indicating that velocity difference DvZv(n1)Kv(n2)

becomes more obvious at high C. The velocity is

proportional to the hole size if the chain size is smaller

than the hole size, but it decreases obviously if the chain size
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is much larger than the hole size. We also find the velocity

difference Dv increases with the hole size. Behaviors

different from a single chain system are also observed and

discussed.
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[1] Baumgärtner A, Skolnick J. Phys Rev Lett 1995;74:2142.

[2] Sung W, Park PJ. Phys Rev Lett 1996;77:783.

[3] Szabo I, Bathori G, Tombola F, Brini M, Coppola A, Zoratti M. J Biol

Chem 1997;272:25275.

[4] Park PJ, Sung W. Phys Rev E 1998;57:730.

[5] Lubensky DK, Nelson DR. Biophys J 1999;77:1824.
[6] Akeson M, Branton D, Kasianowicz JJ, Brandin E, Deamer DW.

Biophys J 1999;77:3227.

[7] Muthukumar M. J Chem Phys 1999;111:10371.

[8] Muthukumar M. Phys Rev Lett 2001;86:3188.

[9] Chern SS, Cárdenas AE, Coalson RD. J Chem Phys 2001;115:7772.

[10] Meller A, Nivon L, Branton D. Phys Rev Lett 2001;86:3435.

[11] Muthukumar M. J Chem Phys 2003;118:5174.

[12] Kwan KS, Subramaniam CNP, Ward TC. Polymer 2003;44:3061.

[13] Kwan KS, Subramaniam CNP, Ward TC. Polymer 2003;44:3071.

[14] Lansac Y, Maiti PK, Glaser MA. Polymer 2004;45:3099.

[15] Mattozzi A, Neway B, Hedenqvist MS, Gedde UW. Polymer 2005;46:

929.

[16] Kost J, Langer R. Adv Drug Delivery Rev 1991;6:19.

[17] Santini Jr JT, Cima MJ, Langer R. Nature 1999;397:335.

[18] Grayson ACR, Choi IS, Tyler BM, Wang PP, Brem H, Cima MJ, et al.

Nat Mater 2003;2:787.

[19] Han J, Craighead HG. Science 2000;288:1026.

[20] Viovy JL. Rev Mod Phys 2000;72:813.

[21] Gurler MT, Crab CC, Dahlin DM, Kovac J. Macromolecules 1983;16:

398.

[22] Deutsch HP, Binder K. J Chem Phys 1991;94:2294.

[23] Hagita K, Takano H. J Phys Soc Jpn 2003;72:1824.
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